J. reine angew. Math. 588 (2005), 49—69
نویسندگان
چکیده
We establish an unexpected relation among the Weil-Petersson metric, the generalized Hodge metrics and the BCOV torsion. Using this relation, we prove that certain kind of moduli spaces of polarized Calabi-Yau manifolds do not admit complete subvarieties. That is, there is no complete smooth family for certain class of polarized Calabi-Yau manifolds. We also give an estimate of the complex Hessian of the BCOV torsion using the relation. After establishing a degenerate version of the Schwarz Lemma of Yau, we prove that the complex Hessian of the BCOV torsion is bounded by the Poincaré metric.
منابع مشابه
J. reine angew. Math. 588 (2005), 1—25
We characterize, in terms of elementary properties, the abelian monoids which are direct limits of finite direct sums of monoids of the form ðZ=nZÞ t f0g (where 0 is a new zero element), for positive integers n. The key properties are the Riesz refinement property and the requirement that each element x has finite order, that is, ðnþ 1Þx 1⁄4 x for some positive integer n. Such monoids are neces...
متن کاملOn p-Kostka numbers and Young modules
The combinatorial properties of Young modules corresponding to maximal Young subgroups are studied: an explicit formula for p-Kostka numbers is given, and as applications, the ordinary characters of Young modules are described and a branching rule for Young modules is determined. Moreover, for certain n-part partitions the reduction formulas for p-Kostka numbers given in A. Henke, S. Koenig [Re...
متن کاملRectilinearization of semi-algebraic p-adic sets and Denef’s rationality of Poincaré series
In [R. Cluckers, Classification of semi-algebraic sets up to semi-algebraic bijection, J. Reine Angew. Math. 540 (2001) 105–114], it is shown that a p-adic semi-algebraic set can be partitioned in such a way that each part is semi-algebraically isomorphic to a Cartesian product ∏l i=1 R(k) where the sets R(k) are very basic subsets of Qp . It is suggested in [R. Cluckers, Classification of semi...
متن کاملHarmonic Morphisms, Hermitian Structures and Symmetric Spaces
[A] M. Svensson, On holomorphic harmonic morphisms, Manuscripta Math. 107 (2002), 1–13. [B] M. Svensson, Harmonic morphisms from even-dimensional hyperbolic spaces, Math. Scand. 92 (2003), 246–260. [C] M. Svensson, Holomorphic foliations, harmonic morphisms and the Walczak formula, J. London Math. Soc. 68 (2003), 781–794. [D] M. Svensson, Harmonic morphisms in Hermitian geometry, J. Reine Angew...
متن کاملCrystal Dissolution and Precipitation in Porous Media: L-contraction and Uniqueness
In this note we continue the analysis of the pore-scale model for crystal dissolution and precipitation in porous media proposed in [C. J. van Duijn and I. S. Pop, Crystal dissolution and precipitation in porous media: pore scale analysis, J. Reine Angew. Math. 577 (2004), 171–211]. There the existence of weak solutions was shown. We prove an L1-contraction property of the pore-scale model. As ...
متن کامل